Introduction to Discrete time to Event Data

Teachers Employment Data

Discrete Time

Suppose we are interested in the event occurence time, T_i .

If $T_i \in [k, k+1)$ then we **discretize** and say $T_i = k$.

1. Estimate the **hazard function**, h(k).

- 1. Estimate the **hazard function**, h(k).
- 2. Estimate the **survivor function**, S(k).

- 1. Estimate the **hazard function**, h(k).
- 2. Estimate the **survivor function**, S(k).
- 3. Characterize measures of **central tendency**.

- 1. Estimate the **hazard function**, h(k).
- 2. Estimate the **survivor function**, S(k).
- 3. Characterize measures of **central tendency**.
- 4. **Likelihood** type analyses.

Definition

Recall that the discrete hazard function is defined as

$$h(t) = P(T = t | T \ge t).$$

Intuitive Estimator - Hazard Function

Suppose that at time k there are r_k individuals at risk.

Intuitive Estimator - Hazard Function

Suppose that at time k there are r_k individuals at risk. Of these, d_k individuals experience the event.

Intuitive Estimator - Hazard Function

Suppose that at time k there are r_k individuals at risk.

Of these, d_k individuals experience the event.

This gives an obvious estimator of

$$\hat{h}(k) = \frac{d_k}{r_k}$$
.

Interpretation and Life Tables

This is the **empirical proportion** of those experiencing the event out of **those under observation and at risk**. As a result, it intuitively accounts for censoring.

Interpretation and Life Tables

Year	Number At Risk	Number of Events	Number Censored	Hazard Function
0	3941	0	0	0.000
1	3941	456	0	0.116
2	3485	384	0	0.110
3	3101	359	0	0.116
4	2742	295	0	0.108
5	2447	218	0	0.089
6	2229	184	0	0.083
7	2045	123	280	0.060
8	1642	79	307	0.048
9	1256	53	255	0.042
10	948	35	265	0.037
11	648	16	241	0.025
12	391	5	386	0.013

Survivor Function

Intuitive Estimator - Survivor Function

Using a similar argument, we may be tempted to take

$$\widehat{S}(k) = \frac{r_k}{n}$$
.

This will not work.

Relationship to Hazard

Recall that the survivor function can be expressed as

$$S(k) = P(T \ge k) = \prod_{j=1}^{k} \{1 - h(j)\}.$$

Estimation of the Survivor Function

This gives us the plug-in estimator given by

$$\widehat{S}(k) = \prod_{i=1}^k \left\{1 - \widehat{h}(j)\right\} = \prod_{i=1}^k \left\{1 - \frac{d_j}{r_i}\right\}.$$

► The **mean** will be biased downwards.

- ▶ The **mean** will be biased downwards.
- ▶ In general, **nonparametric** mean estimation will not be possible.

- ▶ The **mean** will be biased downwards.
- ▶ In general, **nonparametric** mean estimation will not be possible.
- Can instead use the median.

- The mean will be biased downwards.
- ▶ In general, nonparametric mean estimation will not be possible.
- Can instead use the median.
- ▶ Take m to be such that $\widehat{S}(m) > 0.5 > \widehat{S}(m+1)$, then

median =
$$m + \left[\frac{\widehat{S}(m) - 0.5}{\widehat{S}(m) - \widehat{S}(m+1)}\right]$$
.

Teaching Example

Year	Hazard Function	Survivor
0	0.000	1.000
1	0.116	0.884
2	0.110	0.787
3	0.116	0.695
4	0.108	0.620
5	0.089	0.565
6	0.083	0.518
7	0.060	0.487
8	0.048	0.464
9	0.042	0.444
10	0.037	0.428
11	0.025	0.417
12	0.013	0.412

Time-to-Event as Stochastic Process

Just like with transition models, we can take

$$\{Y(s)\in\{0,1\}\mid s=0,1,2,\ldots\}\,$$

to be a **stochastic process** representing the outcome process, with Y(s) = 0 when the event has not been observed and Y(s) = 1, otherwise.

Time-to-Event as Stochastic Process

Just like with transition models, we can take

$$\{Y(s) \in \{0,1\} \mid s = 0,1,2,\dots\},\$$

to be a **stochastic process** representing the outcome process, with Y(s) = 0 when the event has not been observed and Y(s) = 1, otherwise.

Further define

$${Z(s) \in \{0,1\} \mid s = 0,1,2,\dots\}},$$

to be the **censoring process** with Z(s) = 1 when the individual is **still under observation** and Z(s) = 0 otherwise.

History Vectors

Also as before take

$$\mathcal{H}^{Y}(s) = (Y(0), Y(1), \dots, Y(s-1)),$$

in addition to the corresponding vectors for the **observation process**, $\mathcal{H}^{Z}(s)$, and the **joint process** $\mathcal{H}^{Y,Z}(s)$.

Complete Likelihood

For any individual, we are interested in the likelihood contribution given by

$$L_i = \prod_{s=1}^{\infty} P(Y(s), Z(s)|\mathcal{H}^{Y,Z}(s)) = \prod_{s=1}^{\infty} P(Y(s)|Z(s), \mathcal{H}^{Y,Z}(s)) \times P(Z(s)|\mathcal{H}^{Y,Z}(s)).$$

Simplifying Assumptions

We typically make two simplifying assumptions

1. Conditionally Independent Censoring: Under conditionally independent censoring we have

$$P(Y(s)|Z(s),\mathcal{H}^{Y,Z}(s))=P(Y(s)|\mathcal{H}^{Y}(s)).$$

Simplifying Assumptions

We typically make two simplifying assumptions

1. **Conditionally Independent Censoring:** Under conditionally independent censoring we have

$$P(Y(s)|Z(s),\mathcal{H}^{Y,Z}(s))=P(Y(s)|\mathcal{H}^{Y}(s)).$$

2. **Non-Informative Censoring:** Under non-informative censoring we assume that $P(Z(s)|\mathcal{H}^{Y,Z}(s))$ and $P(Y(s)|\mathcal{H}^{Y}(s))$ are **functionally independent**.

Simplified Likelihood

Under these assumptions, the partial likelihood becomes

$$L_i = \prod_{s=1}^{\infty} P(Y(s)|\mathcal{H}^Y(s)) = \prod_{s=1}^{C_i} h_i(s;\theta)^{Y_i(s)} (1-h_i(s;\theta))^{1-Y_i(s)}.$$

Here $h_i(s; \theta)$ is **some parametric model** for the hazard!

▶ When we discretize time, we can use discrete-time survival methods.

- ▶ When we discretize time, we can use discrete-time survival methods.
- ▶ Using **life tables** we can use the **empirical estimator** for the hazard function.

- When we discretize time, we can use discrete-time survival methods.
- ▶ Using **life tables** we can use the **empirical estimator** for the hazard function.
- ▶ The **survivor function** can be estimated using the form of the **hazard function**.

- When we discretize time, we can use discrete-time survival methods.
- ▶ Using **life tables** we can use the **empirical estimator** for the hazard function.
- ▶ The **survivor function** can be estimated using the form of the **hazard function**.
- ► The **median** can be estimated as a measure of central tendency.

- When we discretize time, we can use discrete-time survival methods.
- ▶ Using **life tables** we can use the **empirical estimator** for the hazard function.
- ▶ The **survivor function** can be estimated using the form of the **hazard function**.
- The median can be estimated as a measure of central tendency.
- ▶ We can use **stochastic process** notation to write down the likelihood expression.

- When we discretize time, we can use discrete-time survival methods.
- ▶ Using **life tables** we can use the **empirical estimator** for the hazard function.
- ► The survivor function can be estimated using the form of the hazard function.
- The median can be estimated as a measure of central tendency.
- ▶ We can use **stochastic process** notation to write down the likelihood expression.
- ► Under the assumptions of **conditionally independent** and **non-informative** censoring, this becomes a **binomial likelihood**.