
Introduction to Discrete time to Event Data
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Discrete Time

Suppose we are interested in the event occurence time, Ti .
If Ti ∈ [k , k + 1) then we discretize and say Ti = k .



Goals of Discrete Time-to-Event Analysis

1. Estimate the hazard function, h(k).

2. Estimate the survivor function, S(k).
3. Characterize measures of central tendency.
4. Likelihood type analyses.
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The Hazard Function



Definition

Recall that the discrete hazard function is defined as

h(t) = P(T = t|T ≥ t).



Intuitive Estimator - Hazard Function

Suppose that at time k there are rk individuals at risk.

Of these, dk individuals experience the event.
This gives an obvious estimator of

ĥ(k) = dk

rk
.
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Interpretation and Life Tables

This is the empirical proportion of those experiencing the event
out of those under observation and at risk. As a result, it

intuitively accounts for censoring.



Interpretation and Life Tables
Year Number At Risk Number of Events Number Censored Hazard Function

0 3941 0 0 0.000
1 3941 456 0 0.116
2 3485 384 0 0.110
3 3101 359 0 0.116
4 2742 295 0 0.108
5 2447 218 0 0.089
6 2229 184 0 0.083
7 2045 123 280 0.060
8 1642 79 307 0.048
9 1256 53 255 0.042
10 948 35 265 0.037
11 648 16 241 0.025
12 391 5 386 0.013



Survivor Function



Intuitive Estimator - Survivor Function

Using a similar argument, we may be tempted to take

Ŝ(k) = rk

n .

This will not work.



Relationship to Hazard

Recall that the survivor function can be expressed as

S(k) = P(T ≥ k) =
k∏

j=1
{1− h(j)} .



Estimation of the Survivor Function

This gives us the plug-in estimator given by

Ŝ(k) =
k∏

j=1

{
1− ĥ(j)

}
=

k∏
j=1

1− dj

rj

 .



Measures of Central Tendency



Characterizing the Distribution

I The mean will be biased downwards.

I In general, nonparametric mean estimation will not be possible.
I Can instead use the median.
I Take m to be such that Ŝ(m) > 0.5 > Ŝ(m + 1), then

median = m +
[

Ŝ(m)− 0.5
Ŝ(m)− Ŝ(m + 1)

]
.
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Teaching Example
Year Hazard Function Survivor

0 0.000 1.000
1 0.116 0.884
2 0.110 0.787
3 0.116 0.695
4 0.108 0.620
5 0.089 0.565
6 0.083 0.518
7 0.060 0.487
8 0.048 0.464
9 0.042 0.444
10 0.037 0.428
11 0.025 0.417
12 0.013 0.412



Likelihood Based Analyses



Time-to-Event as Stochastic Process

Just like with transition models, we can take

{Y (s) ∈ {0, 1} | s = 0, 1, 2, . . . } ,

to be a stochastic process representing the outcome process, with Y (s) = 0 when the
event has not been observed and Y (s) = 1, otherwise.

Further define
{Z (s) ∈ {0, 1} | s = 0, 1, 2, . . . } ,

to be the censoring process with Z (s) = 1 when the individual is still under
observation and Z (s) = 0 otherwise.
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History Vectors

Also as before take
HY (s) = (Y (0), Y (1), . . . , Y (s − 1)),

in addition to the corresponding vectors for the observation process, HZ (s), and the
joint process HY ,Z (s).



Complete Likelihood

For any individual, we are interested in the likelihood contribution given by

Li =
∞∏

s=1
P(Y (s), Z (s)|HY ,Z (s)) =

∞∏
s=1

P(Y (s)|Z (s),HY ,Z (s))× P(Z (s)|HY ,Z (s)).



Simplifying Assumptions

We typically make two simplifying assumptions

1. Conditionally Independent Censoring: Under conditionally independent
censoring we have

P(Y (s)|Z (s),HY ,Z (s)) = P(Y (s)|HY (s)).

2. Non-Informative Censoring: Under non-informative censoring we assume that
P(Z (s)|HY ,Z (s)) and P(Y (s)|HY (s)) are functionally independent.
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Simplified Likelihood

Under these assumptions, the partial likelihood becomes

Li =
∞∏

s=1
P(Y (s)|HY (s)) =

Ci∏
s=1

hi(s; θ)Yi(s)(1− hi(s; θ))1−Yi(s).

Here hi(s; θ) is some parametric model for the hazard!



Does this look familiar?



Summary

I When we discretize time, we can use discrete-time survival methods.

I Using life tables we can use the empirical estimator for the hazard function.
I The survivor function can be estimated using the form of the hazard function.
I The median can be estimated as a measure of central tendency.
I We can use stochastic process notation to write down the likelihood expression.
I Under the assumptions of conditionally independent and non-informative

censoring, this becomes a binomial likelihood.
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